947 research outputs found

    Flexibility of the imidazolium based ionic liquids/water system for the synthesis of siliceous 10-ring containing microporous frameworks

    Get PDF
    By using asymmetric di-substituted imidazolium molecules (1-Butyl-3-methylimidazolium (BMIM) and 1-Ethyl-3-methylimidazolium (EMIM) bromide) as the structure directing agents, in combination with simple changes in silica source or sodium/water content it is possible to prepare three pure phase microporous 10-ring siliceous zeolitic structures. The crystallizations are comparatively rapid with fully crystalline material resulting in 1–3 days at 443 K. In contrast to many recipes reported for pure silica materials, the synthesis is performed without the use of HF or without the need to alter the properties of the SDA, while significantly lower amounts of both ionic liquid and mineralizing agent are required. The results obtained indicate that effective phase control can be achieved from a primary gel composition by minor changes to either the silica source or the water/sodium content, with a strong specificity in the formation of topologies with interconnected 10-rings

    Validation protocols for blood pressure measuring devices: the impact of the European Society of Hypertension International Protocol and the development of a Universal Standard

    Get PDF
    In the last three decades protocols for the validation of blood pressure measuring devices have been developed by the US Association for the Advancement of Medical Instrumentation, the British Hypertension Society, the German Hypertension League, the European Society of Hypertension Working Group on blood pressure Monitoring and the International Organization for Standardization. The European Society of Hypertension International Protocol required much smaller sample size than the other protocols, aiming to reduce the time, resources and cost of validation studies and thereby increase the number of validated devices. Given its specifications, the European Society of Hypertension International Protocol was adequate for ‘high- and low-accuracy’ devices, yet assessment of ‘moderate accuracy’ devices had high uncertainty with resultant high rate of device failure. Thus, devices validated using the European Society of Hypertension International Protocol should be considered to be as accurate as those validated with the previous Association for the Advancement of Medical Instrumentation or British Hypertension Society protocols. However, the European Society of Hypertension International Protocol did not allow subgroup evaluation (arm sizes, special populations, etc). The mission of the European Society of Hypertension International Protocol to promote the concept of validation has been well achieved, as almost double studies have been published using it than all the other protocols together. However, the maintenance of different validation protocols is confusing and therefore experts from the Association for the Advancement of Medical Instrumentation, European Society of Hypertension International Protocol and International Organization for Standardization have now developed the AAMI/ESH/ISO Universal Standard (ISO 81060-2:2018) as the recommended 21st-century procedure for worldwide application. The European Society of Hypertension Working Group has published a practical guide for using the Universal Standard. It is in the interests of all scientific bodies to propagate the Universal Standard and ensure its wide implementation

    Oral tolerance to cancer can be abrogated by T regulatory cell inhibition

    Get PDF
    Oral administration of tumour cells induces an immune hypo-responsiveness known as oral tolerance. We have previously shown that oral tolerance to a cancer is tumour antigen specific, non-cross-reactive and confers a tumour growth advantage. We investigated the utilisation of regulatory T cell (Treg) depletion on oral tolerance to a cancer and its ability to control tumour growth. Balb/C mice were gavage fed homogenised tumour tissue – JBS fibrosarcoma (to induce oral tolerance to a cancer), or PBS as control. Growth of subcutaneous JBS tumours were measured; splenic tissue excised and flow cytometry used to quantify and compare systemic Tregs and T effector (Teff) cell populations. Prior to and/or following tumour feeding, mice were intraperitoneally administered anti-CD25, to inactivate systemic Tregs, or given isotype antibody as a control. Mice which were orally tolerised prior to subcutaneous tumour induction, displayed significantly higher systemic Treg levels (14% vs 6%) and faster tumour growth rates than controls (p<0.05). Complete regression of tumours were only seen after Treg inactivation and occurred in all groups - this was not inhibited by tumour feeding. The cure rates for Treg inactivation were 60% during tolerisation, 75% during tumour growth and 100% during inactivation for both tolerisation and tumour growth. Depletion of Tregs gave rise to an increased number of Teff cells. Treg depletion post-tolerisation and post-tumour induction led to the complete regression of all tumours on tumour bearing mice. Oral administration of tumour tissue, confers a tumour growth advantage and is accompanied by an increase in systemic Treg levels. The administration of anti-CD25 Ab decreased Treg numbers and caused an increase in Teffs. Most notably Treg cell inhibition overcame established oral tolerance with consequent tumor regression, especially relevant to foregut cancers where oral tolerance is likely to be induced by the shedding of tumour tissue into the gut

    Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness.

    Get PDF
    BACKGROUND: Numerous pathologies result in multiple-organ failure, which is thought to be a direct consequence of compromised cellular bioenergetic status. Neither the nature of this phenotype nor its relevance to survival are well understood, limiting the efficacy of modern life-support. METHODS: To explore the hypothesis that survival from critical illness relates to changes in cellular bioenergetics, we combined assessment of mitochondrial respiration with metabolomic, lipidomic and redox profiling in skeletal muscle and blood, at multiple timepoints, in 21 critically ill patients and 12 reference patients. RESULTS: We demonstrate an end-organ cellular phenotype in critical illness, characterized by preserved total energetic capacity, greater coupling efficiency and selectively lower capacity for complex I and fatty acid oxidation (FAO)-supported respiration in skeletal muscle, compared to health. In survivors, complex I capacity at 48 h was 27% lower than in non-survivors (p = 0.01), but tended to increase by day 7, with no such recovery observed in non-survivors. By day 7, survivors' FAO enzyme activity was double that of non-survivors (p = 0.048), in whom plasma triacylglycerol accumulated. Increases in both cellular oxidative stress and reductive drive were evident in early critical illness compared to health. Initially, non-survivors demonstrated greater plasma total antioxidant capacity but ultimately higher lipid peroxidation compared to survivors. These alterations were mirrored by greater levels of circulating total free thiol and nitrosated species, consistent with greater reductive stress and vascular inflammation, in non-survivors compared to survivors. In contrast, no clear differences in systemic inflammatory markers were observed between the two groups. CONCLUSION: Critical illness is associated with rapid, specific and coordinated alterations in the cellular respiratory machinery, intermediary metabolism and redox response, with different trajectories in survivors and non-survivors. Unravelling the cellular and molecular foundation of human resilience may enable the development of more effective life-support strategies

    Test of a Novel Streptococcus pneumoniae Serotype 6C Type Specific Polyclonal Antiserum (Factor Antiserum 6d) and Characterisation of Serotype 6C Isolates in Denmark

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2007, Park <it>et al. </it>identified a novel serotype among <it>Streptococcus pneumoniae </it>serogroup 6 which they named serotype 6C. The aim of this study was to evaluate with the Neufeld test a novel <it>S. pneumoniae </it>serotype 6C type specific polyclonal antiserum. In addition, serotype 6C isolates found in Denmark in 2007 and 2008 as well as eight old original serotype 6A isolates were characterised.</p> <p>Methods</p> <p>In this study, 181 clinical <it>Streptococcus pneumoniae </it>isolates from Denmark 2007 and 2008 were examined; 96 isolates had previously been typed as serotype 6A and 85 as serotype 6B. In addition, eight older isolates from 1952 to 1987, earlier serotyped as 6A, were examined. Serotype 6C isolates were identified by PCR and serotyping with the Neufeld test using the novel type specific polyclonal antiserum, factor antiserum 6 d, in addition to factor antisera 6b, 6b* (absorbed free for cross-reactions to serotype 6C) and 6c. All antisera are commercially available and antiserum 6b obtained from the supplier after 1 January 2009 is antiserum 6b*. All serotype 6C isolates were further characterised using multi-locus sequence typing.</p> <p>Results</p> <p>When retesting all 96 original serotype 6A isolates by PCR and the Neufeld test, 29.6% (24 of 81) of the invasive isolates in Denmark from 2007 and 2008 were recognised as serotype 6C. In addition, three of eight old isolates originally serotyped as 6A were identified to be serotype 6C. The oldest serotype 6C isolate was from 1962. The serotype 6C isolates belonged to eleven different sequence types (ST) and nine clonal complexes (CC), ST1692 (CC395), ST386 (CC386) and ST481 (CC460) were the predominant types.</p> <p>Conclusions</p> <p>We tested a novel polyclonal antiserum 6 d, as well as modified antiserum 6b*, provided a scheme for the serotyping of <it>S. pneumoniae </it>serogroup 6 using the Neufeld test and compared the serotyping method with PCR based methods. The two types of methods provided the same results. In future, it will, therefore, be possible to test also serotype 6C in accordance to the standard method for serotyping of <it>S. pneumoniae </it>recommended by WHO.</p> <p>Among all invasive isolates from Denmark 2007 and 2008, serotype 6C constituted 29.6% of the original serotype 6A isolates. The serotype 6C isolates were found to be diverse belonging to a number of different STs and CCs of which most have been observed in other countries previously. Serotype 6C is regarded as an "old" serotype being present among <it>S. pneumoniae </it>isolates in Denmark for at least 48 years. The genetic diversity of serotype 6C isolates and their genetic relationship to other serotypes suggested that serotype 6C strains may have arisen from several different independent recombination events involving different parental strains such as serotypes 6A, 6B, 23F and 4.</p

    The percentage of CD133+ cells in human colorectal cancer cell lines is influenced by Mycoplasma hyorhinis infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mollicutes </it>contamination is recognized to be a critical issue for the cultivation of continuous cell lines. In this work we characterized the effect of <it>Mycoplasma hyorhinis </it>contamination on CD133 expression in human colon cancer cell lines.</p> <p>Methods</p> <p>MycoAlert<sup>® </sup>and mycoplasma agar culture were used to detect mycoplasma contamination on GEO, SW480 and HT-29 cell lines. Restriction fragment length polymorphism assay was used to determine mycoplasma species. All cellular models were decontaminated by the use of a specific antibiotic panel (Enrofloxacin, Ciprofloxacin, BM Cyclin 1 and 2, Mycoplasma Removal Agent and MycoZap<sup>®</sup>). The percentage of CD133 positive cells was analyzed by flow cytometry on GEO, SW480 and HT-29 cell lines, before and after <it>Mycoplasma hyorhinis </it>eradication.</p> <p>Results</p> <p><it>Mycoplasma hyorhinis </it>infected colon cancer cell lines showed an increased percentage of CD133+ cells as compared to the same cell lines rendered mycoplasma-free by effective exposure to antibiotic treatment. The percentage of CD133 positive cells increased again when mycoplasma negative cells were re-infected by <it>Mycoplasma hyorhinis</it>.</p> <p>Conclusions</p> <p><it>Mycoplasma hyorhinis </it>infection has an important role on the quality of cultured human colon cancer cell lines giving a false positive increase of cancer stem cells fraction characterized by CD133 expression. Possible explanations are (i) the direct involvement of Mycoplasma on CD133 expression or (ii) the selective pressure on a subpopulation of cells characterized by constitutive CD133 expression.</p> <p>In keeping with United Kingdom Coordinating Committee on Cancer Research (UKCCCR) guidelines, the present data indicate the mandatory prerequisite, for investigators involved in human colon cancer research area, of employing mycoplasma-free cell lines in order to avoid the production of non-reproducible or even false data.</p

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges

    Toward a Unified Genetic Map of Higher Plants, Transcending the Monocot-Dicot Divergence

    Get PDF
    Closely related (confamilial) genera often retain large chromosomal tracts in which gene order is colinear, punctuated by structural mutations such as inversions and translocations 1. To explore the possibility that conservation of gene order might extrapolate to more distantly related taxa, we first estimated an average structural mutation rate. Nine pairs of taxa, for which there exist both comparative genetic maps and plausible estimates of divergence time, showed an average of0.14 (±0.06) structural mutations per chromosome per million years of divergence (Myr; Table 1). This value is offered as a first approximation, acknowledging that refined comparative data and/or divergence estimates may impel revision
    corecore